POSTGRADUATE SEMINAR SERIES - 1ST DECEMBER 2022

Extremism, segregation and oscillatory states emerge through collective opinion dynamics in a novel agent-based model

What is Opinion Dynamics and where does our model come in?

The model and a result on sufficient conditions for consensus.

Numerical results and the emergent behaviours produced by the model.

Conclusions and future research directions.

Introduction

- What is Opinion Dynamics?
- In the original DeGroot model (1974), agents iteratively update their opinions according to a weighted average.
- Other types of model include: the Voter Model (Holley and Ligget, 1975); and Bounded Confidence models (Deffuant, 2000; Hegselmann and Krause, 2002).
- What sort of features have been incorporated into these models?
- - Are we limited to these approaches?

So where does our model fit in?

- Incorporates and extends elements from bounded confidence, voter and DeGroot-Friedkin models
- Novel features of the model include:
 - Agents can hold multiple opinions.
 - Opinions are continuous.
 - Affinity threshold now includes memory.
- Inspiration was also taken from models of collective animal motion, in particular the Cucker-Smale (2007) model of bird flocks.

Opinions are D-dimensional and evolved simultaneously.

Euclidean distance from the origin is used as a measure of extremeness

N agents evolve their D dimensional opinion vectors in discrete time

Affinities take values between 0 and 1 and must always be symmetric

$$w(\tau; t, \mu) = \begin{cases} 1, & \text{if } \tau > t - \mu, \\ 0, & \text{if } \tau \le t - \mu, \end{cases}$$

The Model: Key Notation

The Model: Opinion Updates

For all
$$i : \mathbf{v}_i(t+1) = \mathbf{v}_i(t) + \frac{1}{Q_i(t;\rho_i)} \sum_{j=1}^N c_{ij}(t;\rho_i) a_{ij}(t) (\mathbf{v}_j(t) - \mathbf{v}_i(t)),$$

$$c_{ij}(t;\rho_i) = \begin{cases} 1, & \text{if } a_{ij}(t) > \rho_i, \\ 0, & \text{if } a_{ij}(t) \le \rho_i, \end{cases}$$

$$Q_i(t;\rho_i) = \sum_{k=1}^N c_{ij}(t;\rho_i).$$

Two types of affinity threshold:

Universal threshold

 $\rho_i(t) = \rho$

Individually evolving thresholds

$$\rho_i(t) = \rho + (1-\rho) \left(1 - e^{-\alpha \|\mathbf{v}_i(t)\|} \right).$$

How can we guarantee consensus?

Proposition 2.2. Consider a population of agents i = 1, 2, ..., N, evolving their opinions $\mathbf{v}_i(t) \in \mathbb{R}^D$ according to the model (1)–(5), with some universal threshold $\rho_i(t) = \rho$ for all *i*, *t*.

- (1) Given any initial condition, the opinions converges to some steady state: $\lim_{t\to\infty} \mathbf{v}_i(t) = \mathbf{v}_{*i}$ for all *i*.
- (2) Given any initial condition and any $\rho < \rho_*$, where ρ_* is given by (13) with $R_0 = \max_i \{\mathbf{v}_i(0)\},$ the opinions converge to a consensus: $\lim_{t\to\infty} \mathbf{v}_i(t) = \mathbf{v}_*$ for some common \mathbf{v}_* . Moreover,

$$\mathbf{v}_* = \frac{1}{N} \sum_{i=1}^N \mathbf{v}_i(0),$$

is the initial mean opinion of the population.

 $\rho_* = \frac{1}{\left(1 + 4\mu R_0^2\right)^{1/2}}$

Nethodology

- N= 100 agents with initial opinions drawn from D independent normal distributions.
- 1000 sets of initial conditions for each parameter set.
- We say that a "cluster" has formed if all pairwise distances are less than 1e-6.
- The simulation has converged to a steady state if none or very little movement has occurred in 100 timesteps.

Table 1. Parameters used in numerical simulations.

Parameter

- D (Dimensionality of every opinion)
- μ (Memory capacity of population)
- ρ (Universal threshold in Section 3.2; baseline threshold in Section 3.3)
- a (Reinforcement rate; only in Section 3.3)

Values used

1, 2, 3, 5 2, 10 0, 0.01, 0.02, ..., 0.99 0.1, 0.2, 0.4, 0.8

Results

- Individually evolving affinity thresholds
- Failure to converge: collective oscillations

Consensus

Universal Affinity Threshold

Universal Affinity Threshold

Evolution of the Connectome

2.5

Cluster Formation

Universal Affinity Threshold

Universal Affinity Threshold

Cluster Formation

Universal Affinity Threshold

Convergence Time

Universal Affinity Threshold

Universal Affinity Threshold

Opinion Drift

Low

Individually Evolving Affinity Thresholds

- We now fix D = 2 and allow agents to evolve their own affinity threshold.
- Vary the reinforcement rate, which determines how sharply affinity threshold increases with extremeness of opinion.
- Define an extremisation measure:

Individually Evolving Affinity Threshold

Opinion Drift

Individually Evolving Affinity Threshold

Extremisation

Individually Evolving Affinity Threshold

Individually Evolving Affinity Threshold

Extremisation

Failure to converge: collective oscillations

Failure to converge: collective oscillations

Conclusions

- Developed a novel model of opinion formation capable of mimicking socio-psychological phenomena such as emergent co-oporation and group polarisation.
- Extends existing theoretical findings and support experimental ones.
- Sufficiently low universal threshold guarantees consensus.
- A population which takes a longer history of itself into account is less susceptible to extremism.
- Heterogeneous networks permit oscillatory opinion clusters.

Future Research?

More sophisticated initial conditions, such as those that include correlations between opinions.

- Other potential extensions could include:
 - Hierarchical populations
 - Repulsive interactions
 - Stochastic fluctuations

Thanks for listening!

Any Questions?

